

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BAMS	LEVEL: 7
COURSE CODE: MCS702S	COURSE NAME: MECHANICS
SESSION: JANUARY 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 83

SECOND OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER	Dr I.K.O. AJIBOLA	
MODERATOR:	PROF D. MAKINDE	

INSTRUCTIONS		
1.	Answer ALL the questions in the booklet provided.	
2.	Show clearly all the steps used in the calculations.	
3.	All written work must be done in blue or black ink and sketches must	
	be done in pencil.	

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

QUESTION1 (16 marks)

- 1.1 If vectors $\overline{a} = i + 2j + 3k$ and $\overline{b} = 4i 5j 5k$
 - 1.1.1 Obtain the unit vectors of \overline{a} and \overline{b} in their directions [5]
 - 1.1.2 Calculate the angle between the two 3D vectors \overline{a} and \overline{b} [6]
- 1.2 Given three 3-dimensional vectors \mathbf{A} , \mathbf{B} , and \mathbf{C} :
 - 1.2.1 find the scalar triple product [2]
 - show that the product $\overline{A} \bullet (\overline{B}X\overline{C}) = \overline{B} \bullet (\overline{C}X\overline{A})$ by a cyclic change of the vectors A, B, and C [3]

Question 2 (21 marks)

A sports car is sitting at rest in a freeway entrance ramp. The driver sees a break in traffic and floors the car's accelerator to a constant acceleration of 4.9 metre per second square as it moves in a straight line onto the highway.

- 2.1 What distance does the car travelled in reaching the freeway at 30m/s? [6]
- 2.2 Given two vectors $\overline{A} = 2i + 3j 5k$ and $\overline{B} = 4i j + 3k$ obtain the size and direction of their vector product. [6]
- 2.3 The acceleration of a point in rectilinear motion is given by a = -9.8 It is observed that the velocity V is zero and the displacement x is +25 when t = 0.

 Determine the equation of the displacement. [9]

QUESTION 3 (15 marks)

- 3.1 A vehicle's lateral acceleration is 0.92g. If this represents maximum centripetal acceleration that can be attained without skidding out of the circular path and velocity of the car is 45m/s. What is the minimum radius of curve the car can negotiate (assume an unbanked curve)
- 3.2 Passengers in a carnival ride travel in a circle with radius 5.0 meter, making one complete circle in a time T = 4.0s. What is their acceleration. [10]

QUESTION 4 (14 marks)

4.1 Describe a simple 2D projectile motion along a trajectory. [8]
4.2 A five dollar coin is dropped from a height of a tall building. It starts from rest and falls freely. Compute its position and velocity after
4.2.1 1.0 second [2]
4.2.1 2.5 seconds [2]
4.2.2 3.75 seconds [2]

QUESTION 5 (17 marks)

- 5.1 State and explain the law of conservation of energy of an isolated system giving at least two examples [4]
- 5.2 Give an expression for the work done by an object that undergoes a displacement \vec{S} along a straight line, with a constant force \vec{F} of magnitude F making an angle ϕ with \vec{S} when acting on the object [3]
- Using the work-kinetic energy theorem, show that the work done by a particle or object with mass m moving in the x-direction under a constant net force F_{total} , with constant acceleration is given by $F_{total} \cdot S = \frac{1}{2} m (v_f + v_i) (v_f v_i)$ where, v_i and v_f are the initial and final speeds of the particles. [4]
 - 5.4 A ball of mass 0.250 kg is thrown straight up in the air, giving it an initial velocity of magnitude 23.0 m/s. Use the law of conservation of energy to find how far up it goes, (ignoring air resistance). [6]

END OF EXAMINATION